
Towards Understanding Superlinear Speedup by
Distillation

Neil D. Jones G.W. Hamilton

Computer Science Department School of Computing
University of Copenhagen Dublin City University
2100 Copenhagen, Denmark Dublin 9, Ireland
neil@diku.dk hamilton@computing.dcu.ie

Abstract. Distillation is a fully automatic program transformation that
can yield superlinear program speedups. Bisimulation is a key to the
proof that distillation is correct, i.e., preserves semantics. Bisimulation
normally requires explicit definition of equivalent states. However distil-
lation can produce complexity reductions and thus fewer residual states.
This often makes 1-1 relations between program states of original and
transformed programs hard or impossible to see. The correctness proof
of distillation, since based on observational equivalence, is insensitive
to program running times, and does not help to explain how superlin-
ear speedups can occur. This paper’s approach to better understanding
cause-and-effect in distillation is to simplify distillation as much as pos-
sible, while maintaining its capacity for superlinear speedups. We show
how distillation can give superlinear speedups on some “old chestnut”
programs well-known from the early program transformation literature:
naive reverse, factorial sum, Fibonacci, and palindrome detection. We
describe current work on such questions, partly theoretical and partly
computer experiments. Furthermore, we show using complexity-theoretic
tools that a sizable class of exponential-time programs can be converted
into second-order polynomial-time equivalents. The idea is to trade time
for space, in effect replacing cons or a Turing machine tape by first-order
functions as arguments in a cons-free program. Finally, we conjecture
that distillation can realise these superlinear speedup transformations in
general.

1 Introduction

Distillation, supercompilation, and partial evaluation are automatic program
transformations (see [11–13, 21–23]). The main goal of all three is to transform
a program into an improved program. Partial evaluation has been fairly well
automated [13]. A breakthrough occurred when the Futamura projections (Fu-
tamura, Ershov [7, 8]) were realised in practice: generating a compiler from an
interpreter by self-applying a partial evaluator (see [13] for details and history).
Furthermore, optimal specialisation has been achieved: partial evaluation can re-
move all interpretation overhead when specialising an interpreter to its program
input.
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In some respects supercompilation, deforestation and distillation (Turchin,
Sørensen, Wadler, Hamilton [10–13,21,23,24]) can make deeper transformations
on program control structure. A well-known example is that deforestation can
transform a multipass program into a single pass algorithm [23,24], a feat beyond
the reach of current partial evaluators.

1.1 Goal: extend automatic superlinear program speedup

Program optimisations by hand (Burstall-Darlington and many others [1, 3])
sometimes yield superlinear program speedups. Transformation can make sub-
stantial improvements, for instance changing a program running in time Opn2q or
even Op2nq into one running in time Opnq. Familiar examples include naive pro-
grams for list reversal, sum of factorials, and the Fibonacci function. A goal for
many years now has been how to obtain such effects by well-automated methods.

Classical compiler optimisations are a model of automation, though the pro-
gram speedups they give are limited. Many have been proven correct using bisim-
ulation, e.g., [17] by Lacey et al. This has led to some practical automation of
compiler correctness proofs, e.g., [18] by Lerner et al, and successors.

However it has been proven (see [13,21]) that partial evaluation, deforestation
and supercompilation (as well as most classical compiler optimisations) are all
limited to at most program speedups by linear constant factors. One reason for
such limited optimisation speedups is that the bisimulations of [17] all involve
one-to-one relations between the control points of the original program and the
compiler-optimised program.

In contrast, distillation [10, 11]) can yield superlinear asymptotic speedups:
this refinement of supercompilation can sometimes transform a program into a
semantically equivalent but asymptotically faster equivalent.

1.2 Bisimulation and program transformation.

Correctness of transformation can be proven using bisimulation [11, 12, 17] to
relate computations by the original and the transformed programs. A question:

How can a program running in time Opn2q (or even time Op2nq) be
bisimilar to a program running in time Opnq?

This puzzling question was the starting point of this work. It was clear at once
that 1-1 relations between program control points would not suffice to explain
the phenomenon. A challenge to overcome: the system structure and techniques
used in distillation as in [10–12] are complex, and hard to reason about globally.

This paper’s approach to better understanding cause-and-effect in distillation
is to simplify distillation as much as possible, while maintaining its capacity for
superlinear speedups. We will describe current work on such questions, partly
theoretical and partly computer experiments.
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2 A language, observational equivalence, and labeled
transition systems

Our approach is to simplify the general distillation techniques of [10–12], so
its essence can be seen in a more limited context, to see what is happening
abstractly. A clearer understanding of cause-and-effect could show how auto-
matically to achieve superlinear speedup on a wider range of programs.

A longer-term goal is to apply distillation techniques to intermediate program
representations in a compiler, where programs are call-by-value and imperative,
i.e., tail-recursive. Related: Debois applies partial evaluation to realise some op-
timisations of intermediate program representations in a compiler [6]; however,
superlinear speedup is beyond the current state of the art.

2.1 Source language syntax

Data: let Σ be an uninterpreted signature for constructors, and let TΣ be the set
of all well-formed trees overΣ, finite or infinite. Our examples use as constructors
0-ary 0, unary 1� (successor), and binary constructors �, �, ::. The net effect of
a program is to compute a (mathematical, partial) function f : pTΣq

n á TΣ .
Programs are first-order, built from variables x, constructors c, function calls,

and case. Calls and constructor applications must have all their arguments, i.e.,
full arities. Semantics rrprogss : pTΣq

n á TΣ is call-by-value, omitted for brevity
and because of familiarity.

prog ::� e where ∆
∆ ::� f1 x1 . . . xn � e1 . . . fm x1 . . . xp � em Function definitions
e ::� x | c e1 . . . ek | call | case Expression
call ::� f e1 . . . en Function call
case ::� case e of p1 ñ e1 | . . . | pk ñ ek Case expression
p ::� c x1 . . . xk Case pattern

Free variables are allowed only in the e part of program e where ∆. All other
variables must be bound, either by function parameters or in case patterns.

Definition 1. Denote by timeppxq P NYt8u the running time of program p on
input x, e.g., the number of steps used in computing rrpsspxq.

Goal: automatically transform program p into program p1 such that rrpss � rrp1ss,
but timep1   timep asymptotically, i.e., in the limit as input size grows.

2.2 Observational equivalence and labeled transition systems

Distillation transforms a program p1 into an observationally equivalent program
p2. (Two central references: Milner and Gordon [9, 19].) Observational equiva-
lence implies semantic equivalence, i.e., p1 � p2 implies rrp1ss � rrp2ss.

For definitions of context Crs and evaluation ó appropriate to call-by-value:



Towards Understanding Superlinear Speedup by Distillation 97

Definition 2 (Observational Equivalence). Programs p1, p2 are observa-
tionally equivalent, written p1 � p2, if and only if they have the same termination
behaviour in all closing contexts, i.e., p1 � p2 iff @Crs . Crp1só iff Crp2só.

A limitation of observational equivalence Unfortunately (from this paper’s per-
spective), observational equivalence p � p1 tells us nothing whatsoever about the
comparative running times of the programs involved. In each instance of our
“old chestnut” programs, the original program is observationally equivalent to
its optimised version. Our goal: to clarify the relation between program running
times before and after distillation.

Definition 3 (Labeled transition systems). A labeled transition system (LTS
for short) is a tuple t � pS, s0,Ñ, Actq where S is a set of states. s0 P S is the
root state, 0 is the end-of-action state, and Act is a set of actions α. The tran-
sition relation is Ñ � S � Act � S. Notation: as usual we write a transition
ps, α, s1q in Ñ as s

α
ÝÑ s1.

Definition 4 (Simulation). Binary relation R � S1 � S2 is a simulation of
LTS t1 � pS1, s

1
0,Ñ1, Actq by LTS t2 � pS2, s

2
0,Ñ2, Actq if ps10, s

2
0q P R, and for

every pair ps1, s2q P R and α P Act, s11 P S1:

if s1
α
Ñ s11 then Ds12 P S2 . s2

α
Ñ s12 ^ ps

1
1, s

1
2q P R

Note: t1 and t2 must have the same action sets.

Definition 5 (Bisimulation). A bisimulation � is a binary relation R such
that both R and its inverse R�1 are simulations.

Using an LTS as a program’s abstract syntax. Represent a variable x by a
transition s

x
Ñ 0; represent c e1 . . . ek where c is a constructor by transitions

s
c
Ñ 0, s

#1
ÝÑ s1, . . . , s

#k
ÝÑ sk, where si is the root of the LTS representation

of expression ei; represent case e0 of p1 ñ e1 | . . . | pk ñ ek by transitions

s
case
ÝÑ s0, s

p1ÝÑ s1, . . . , s
pkÝÑ sk; and represent a function call f e1 . . . en by

transitions s
call
ÝÑ s0, s

x1ÝÑ s1, . . . , s
xnÝÑ sn where ∆ contains function definition

f x1 . . . xn � e0.

2.3 Example: “naive reverse” program representation as an LTS

nr input where

nr xs = case xs of

nil => nil

| (:: y ys) => (ap (nr ys) (:: y nil))

ap us vs = case us of

nil => vs

| (:: u us1) => (:: u (ap us1 vs))
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Fig. 1. Labelled Transition System for “naive reverse” program

The LTS representation of the naive reverse program is diagrammed in Fig. 1.
This may be easier to follow than an unstructured set of transitions such as

t 2
call
Ñ 10, 2

xs
Ñ 1, 1

input
Ñ 0, 10

case
Ñ 3, 10

nil
Ñ 4, 10

::py,ysq
Ñ 9, 3

xs
Ñ 0, 4

nil
Ñ 0, . . . u

Short form of the LTS for naive reverse (root state 2, nr code start 10, and ap

code start 17). We abbreviate the LTS by omitting end-of-action state 0 and
variable transitions to 0, and bundling together transitions from a single state.

(2 -> (call 10 (input))) ; root = 2: call nr(input)

(10 -> (case xs ((nil).4) ((:: y ys).9))) ; start "nr"

(4 -> (nil))
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(9 -> (call 17 (6 8)) ; call ap(nr(ys),...)

(6 -> (call 10 (ys))) ; call nr(ys)

(8 -> (:: y 4))

(17 -> (case us ((nil).vs) ((:: u us1).16)))) ; start "ap"

(16 -> (:: u 15)

(15 -> (call 17 (us1 vs)) ; call ap(ws,vs)

An example of optimisation: The program above runs in time Opn2q. It
can, as is well known, be improved to run in time Opnq. Distillation does this
automatically, yielding the following LTS with root state 3 and rev code start 10.
Effect: the nested loop in nr has been replaced by an accumulating parameter.

; Reverse with an accumulating parameter

(3 -> (call 10 (us 2)))

(2 -> (nil))

(10 -> (case xs ((nil) . acc) ((:: x xs1) . 9)))

(9 -> (call 10 (xs1 8)))

(8 -> (:: x acc))

The distilled version in source language format.

rev us nil where

rev xs acc = case xs of

nil => acc

| (:: x xs1) => rev xs1 (:: x acc)

Are these programs bisimilar? There is no obvious bisimilarity relation be-
tween runtime states of nr and rev, e.g., because of different loop structures and
numbers of variables. In the next section we will see that the result of driving a
distilled program is always bisimilar to the result of driving the original program.

3 Distillation: a simplified version

We now describe (parts of) a cut-down version of distillation. Following the
pattern of Turchin, Sørensen and Hamilton, the first step is driving.

3.1 Driving

Distillation and supercompilation of program p � e where ∆ both begin with
an operation called driving. The result is an LTS Drrpss, usually infinite, with no
function calls and with no free variables other than those of p.

If p is closed, then driving will evaluate it completely, yielding as result an
LTS for the value rrpss. Furthermore, given an LTS for a program p with free
variables, the driver will:
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– compute as much as can be seen to be computable;
– expand all function calls and
– yield as output a call-free LTS Drrpss equivalent to program p. (The output

may be infinite if the input program has loops.)

Drrpss will consist entirely of constructors, variables and case expressions whose
tests could not be resolved at driving time. This is a (usually infinite) LTS to
compute the function rrpss (of values of p’s free variables). Another perspective:
Drrpss is essentially a “glorified decision tree” to compute rrpss without calls.
Input is tested and decomposed by case, and output is built by constructors.

Although Drrpss may be infinite it is executable, given initial values of any
free variables. This can be realised in a lazy language, where only a finite portion
of the LTS is looked at in any terminating run.

Correctness of distillation: Theorem 3.10 in [11] shows that for any p, p1,

Drrpss � Drrp1ss implies p � p1

Bottom line: if two programs p, p1 have bisimilar driven versions Drrpss and Drrp1ss,
then the programs are observationally equivalent.

3.2 A driver for the call-by-value language

The driving algorithm transforms a program into a call-free output LTS (possibly
infinite). It is essentially an extended semantics: an expression evaluator that also
allows free variables in the input (transitions to 0 are generated in the output
LTS for these variables); and case edges that are applied to a non-constructor
value (for each, a residual output LTS case transition is generated).

Relations to the drivers of [10–12]: We do not use silent transitions at all, and so
do not need weak bisimulation. Our LTS states have no internal structure, i.e.,
they are not expressions as in [10–12], and have no syntactic information about
the program from which they were generated, beyond function parameters and
case pattern variables. (Embedding, generalisation, well-quasi-orders etc. are not
discussed here, as this paper’s points can be made without them.)

Another difference: the following constructs its output LTS “one state at a
time”: it explicitly allocates new states for constructors and for case expressions
with unresolvable tests.1

One effect is an “instrumentation”. For instance if p is closed, then the driven
output LTS Drrpss will have one state for every constructor operation performed
while computing rrpss, so Drr ss yields some intensional information about its
program argument’s running time (in spite of Theorem 3.10 0f [11]).

Our language is call-by-value, so environments map variables into states, rather
than into expressions as in [10,11]. Types used in the driver:

1 To avoid non-termination of the program transformer itself, we assume the input
does not contain nonproductive loops such as f 0 where f x � f x.
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D : ExpressionÑ LTS
D1 : ExpressionÑ LTS Ñ EnvironmentÑ FcnEnv Ñ LTS
θ P Environment � V ariableá State
∆ P FcnEnv � FunctionNameá V ariable� á Expression

Variable t ranges over LTS’s, and s ranges over states. For brevity, function
environment argument ∆ in the definition of D1 is elided since it is never changed.

1. Drre where ∆ss � D1rress H tu ∆

2. D1rrxss t θ �

"
t with root θx if x P dompθq else

tY ts
x
Ñ 0u where s is a new root state

3. D1rrc e1 . . . ekss t0 θ � let t1 � D1rre1ss t0 θ, . . . , tk � D1rrekss tk�1 θ in

tk Yts
c
Ñ 0, s

#1
ÝÑ rootpt1q, . . . , s

#k
ÝÑ rootptkqu where s is a new root state

4. D1rrf e1 . . . enss t0 θ � let t1 � D1rre1ss t0 θ, . . . , tk � D1rrekss tk�1 θ in
D1rref ss tn tx1 ÞÑ rootpt1q, . . . , xn ÞÑ rootptnqu where ∆ f x1 . . . xn � ef

5. D1rrcase e0 of p1 ñ e1| . . . |pn ñ enss t θ � let t0 � D1rre0ss t θ in

if t0 Q s0
c
Ñ 0, s0

#1
ÝÑ s1, . . . , s0

#k
ÝÑ sk and pi � c x1 . . . xk

then
D1rreiss t0 pθ Y tx1 ÞÑ s1, . . . , xk ÞÑ skuq

else
let t1 � D1rre1ss t0 θ, . . . , tn � D1rrenss tn�1 θ in

tn Y ts
case
ÝÑ rootpt0q, s

p1ÝÑ rootpt1q, . . . , s
pnÝÑ rootptnqu

where s is a new root state

3.3 Distillation’s sequence of transformations

As presented in [11, 12], further analyses and transformations (homeomorphic
embedding, generalisation, folding, etc.) on an infinite Drrpss will yield a finite
transformed program p1. Furthermore, these transformations preserve the prop-
erty of bisimilarity with Drrpss.

The following may help visualise the various stages involved in distillation:

p ÝÑ LTSin ÝÑ LTSdriven ÝÑ LTSout ÝÑ p1

source [parse] (finite, [drive] (infinite, [distill] (finite, [unparse] transformed
program with calls) no calls) with calls) program

Function D is rdrives � rparses.

4 Some speedup principles and examples

4.1 On sources of speedup by distillation

Speedups can be obtained for all our well-known “old chestnut” programs p as
follows (where ps is p applied to known values s of its free variables):
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1. Drive: construct LTSdriven � Drrpsss from ps. (This is finite if ps terminates.)
2. Remove “dead code” from LTSdriven: these are any states that are unreach-

able from its root.
3. Merge any bisimilar states in LTSdriven.

Step 2 must be done after constructing LTSdriven. Step 3 can be done either after
or during driving: elide adding a new state and transitions s

a1Ñ s1, . . . , s
anÑ sn

to LTSdriven if an already-existing LTS state has the same transitions.
Two points: first, in traditional compiler construction, dead code elimina-

tion is very familiar; whereas merging bisimilar states is a form of code folding
not often seen (exception: the “rewinding” by Debois [6]). Distillation accom-
plishes the effect of both optimisations, and in some cases more sophisticated
transformations.

Second, the distiller obtains superlinear speedup for all three programs by
introducing accumulating parameters. In some cases, e.g., Fibonacci, the speedup
is comparable to that of “tupling” of Chin et. al. [4,5]; but distillation does not
introduce new constructors.

4.2 Overview of the “old chestnut” examples

Our goal is to relate the efficiencies of a program p and its distilled version
p1. The transformation sequence as in Section 3.3 involves the possibly infinite
object Drrpss � LTSdriven.

The following experimental results get around this problem by computing
Drrpsss for fixed input values s. The idea is to drive a version ps of p applied to
known values s of its free variables. Assuming that ps terminates, this will yield
a finite LTS whose structure can be examined.

Let n be the input size (e.g., a list length or number value). Then

1. The naive reverse algorithm nrev runs in quadratic time, while its distilled
version runs in linear time. Nonetheless, their driven versions are (strongly)
bisimilar, and so observationally equivalent.
Explanation of speedup: Drrnrevpa1a2...anqss hasOpn2q states, including states
for the computation of the reverse of every suffix of pa1a2 . . . anq. Among
these, at the end of execution only Opnq states are live, for the reverse of the
full list pa1a2 . . . anq.

2. The naive program to compute Factorial sum (sumfacpnq � 0!� 1!� . . . n!)
has running time Opn2q and allocates Opn2q heap cells, due to repeated
recomputation of 0!, 1!, 2!, . . .; but the distilled version is linear-time. The
two are (again) observationally equivalent since their driven versions are
bisimilar. The driven naive Factorial sum LTS has Opn2q states, but among
these, only Opnq are live at the end of execution.
This example is interesting because both source and transformed programs
are purely tail recursive, and so typical of compiler intermediate code.

3. A more extreme example: the obvious program fib for the Fibonacci func-
tion takes exponential time and will fill up the heap with exponentially many
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memory cells. On the other hand, the distilled version of Fibonacci uses an
accumulator and runs in linear time (counting �, � as constant-time opera-
tions). Even so, the two LTS’s are bisimilar.

In contrast to the examples above, the driven program Drrfibnss has Op1.7nq
states, all of which are live. Here speedup source number 3 (Section 4.1)
comes into play: only Opnq states are bisimulation-nonequivalent.

The experiments were carried out in scheme. The first step was parsing: to
transform the input program from the form of Section 2.1 into an LTS, which
for clarity we will call LTSin. The driver as implemented realises the one of
Section 3.2 (except that it it works on LTSin rather than program p). LTSout is
the name of the distiller’s output.

5 Can distillation save time by using space?

5.1 Palindrome: an experiment with an unexpected outcome

Long-standing open questions in complexity theory concern the extent to which
computation time can be traded off against computation space. Consider the set

Pal � ta1a2 . . . an | 1 ¤ i ¤ nñ ai � an�1�i P t0, 1uu

This set in logspace is decidable by a two-loop cons-free program that runs in
time Opn2q.

On the other hand, it can also be decided in linear time by a simple program
with cons. The idea is first to compute the reverse of the input xs � a1a2 . . . an
by using an accumulating parameter; and then to compare xs to its reverse.
Both steps can be done in linear time.

Here, using extra storage space (cons) led to reduced computation time.

A natural conjecture was that any cons-free program deciding membership
in Pal must run in superlinear time. The reasoning was that one would not
expect distillation to transform a cons-free program into one containing cons,
as this would involve inventing a constructor not present in the input program.
To test this conjecture, we ran an existing distiller on the cons-free program
palindrome-decider.

The result was unexpected, and disproved our conjecture: distillation yielded
a linear-time but second-order palindrome recogniser(!)

In effect, the distillation output realises cons by means of second-order func-
tions. Thus, while it does not create any new cons’s its output program, it
achieves a similar effect through the use of lambdas. The output is as follows2:

2 Automatically produced but postprocessed by hand to increase readability.
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p xs xs (λzs.True) where

p xs ys q = case xs of

Nil => q ys

| (:: u us) => p us ys (r q u)

r t u = λws.case ws of

Nil => True

| (:: v vs) => case u of

0 => (case v of

0 => t vs

| 1 => False)

| 1 => (case v of

0 => False

| 1 => t vs)

Furthermore, this cons-free second-order program is tail recursive in the sense
of Definition 6.13 from [15]3:

Definition 6. Cons-free program p is higher-order tail recursive if there is a par-
tial order ¥ on function names such that any application f x1. . .xm �. . .e1 e2. . .
such that e1 can evaluate to a closure xg, v1 . . . varitypgq�1y satisfies either: (a)
f¡g, or (b) f�g and the call (e1 e2) is in tail position.

The partial order p¡r suffices for the palindrome program.

5.2 A theorem and another conjecture

How general is it that distillation sometimes achieves asymptotic speedups?
Are the speedups observed in Palindrome, Naive reverse, Factorial Sum and Fi-
bonacci function accidental? Is there a wide class of programs that the distiller
can speed up significantly, e.g., from exponential time to polynomial time?

A lead: Jones [15] studies the computational complexity of cons-free pro-
grams. Two results from [15] about cons-free programs of type [Bool] -> Bool

in our language: Given a set L of finite bit strings:

1. L P logspace iff L is decidable by a first-order cons-free program that is
tail-recursive

2. L P ptime iff L is decidable by a first-order cons-free program (not neces-
sarily tail-recursive)

Beauty flaw: The result concerning ptime, while elegant in form, is tantalising
because the very cons-free programs that decide exactly problems in ptime, in
general run in exponential time. (This was pointed out in [15].)

This problem’s source is repeated recomputation: subproblems are solved
again and again. A tiny example with exponential running time:

3 The definition is semantic, referring to all program executions, and so undecidable
in general. Abstract interpretation can, however, safely approximate it.
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f x = if x = [] then True else

if f(tl x) then f(tl x) else False

This can be trivially optimised to linear time, but more subtle examples exist.
More generally, Figure 5 in [15] builds from any ptime Turing machine Z a
first-order cons-free program p that simulates Z. In general p solves many sub-
problems repeatedly; these are not easily optimised away as in the tiny example.

The reason, intuitively: absence of cons means that earlier-computed results
must be recomputed when needed, as they cannot be retrieved from a store.

The “trick” the distiller used in the Palindrome example was to speed up the
given cons-free program (first-order, quadratic-time) by adding a function as an
argument. The resulting second-order Palindrome program ran in linear time.

We now generalise, showing that for any first-order cons-free program, even
one running in exponential time, there is a polynomial-time equivalent.4

Theorem 1. L is decidable by a first-order cons-free program iff L is decidable
by a second-order cons-free program that runs in polynomial time.

Corollary 1. L P ptime iff L is decidable by a second-order cons-free program
that runs in polynomial time.

Some comments before sketching the proof. First, the condition “that runs in
polynomial time,” while wordy, is necessary since (as shown in [15]), unrestricted
second-order cons-free programs decide exactly the class exptime, a proper su-
perset of ptime. In fact, second-order cons-free programs can run in double
exponential time (another variation on the “beauty flaw” remarks above).

Second, the Corollary is analogous to the standard definition: L P ptime iff
it is decidable by a Turing machine that runs in polynomial time. The punch
line is that no tape or other form of explicit storage is needed; it is enough to
allow functions as arguments.

Proof (sketch “if”). Suppose L is decidable by a second-order cons-free program
that runs in polynomial time. All that is needed is to ensure that L can also be
decided by a polynomial-time Turing machine. This follows by the known time
behavior of call-by-value implementations of functional programs, e.g., as done
by traditional compilers that represent functional values by closures.

Proof (sketch “only if”). First, suppose first-order cons-free program p decides
L. Consider the “cache-based algorithm” to compute rrpss as shown in Figure 8
of [15]. While this runs in polynomial time by Theorem 7.16, it is not cons-free
since it uses storage for the cache.

Second, Figure 8 can be reprogrammed, to replace the cache argument by a
second-order function. Rather than give a general construction, we just illustrate
the idea for the Fibonacci function, and leave the reader to formulate the general
construction. The standard definition of Fibonacci:

4 Can this be strengthened to linear time? No, since timepOpnqq � timepOpn2qq.
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f n = if n <= 1 then 1 else f(n-1) + f(n-2)

The “cache” of Figure 8 in [15] is a table. For each function f in p, it contains all
the arguments and the results fpargumentsq that have been computed so far.
For a cons-free first-order program and an input of length n there can only be
polynomially many different arguments.

Of course the cache of [15] requires some form of storage, e.g., cons. The
trick in this paper is to go to second-order cons-free form by replacing the cache
by a function c : C � pArguments Ñ Outputsq and simply applying c when
arguments are to be looked up in the cache. The cache c must be updated at
the return of every function, so f : AÑ B is replaced by f 1 : A� C Ñ B � C.

A cached version for the concrete case of the Fibonacci function is:

f n (λn.0) where

f n c =

let cv = c n in

if cv /= 0 then (cv,c) else

if n <= 1 then (1,update c n 1) else

let (u,c1) = f (n-1) c in

let (v, c2) = f (n-2) c1 in

let r = u+v in (r,update c n r)

update c n v =

if c n == v then c else λm.if m==n then v else c m

This program runs in polynomial time: it makes Opnq calls of f when computing
f(n), and the time spent checking the cache contents is also polynomially limited.

%

A conjecture strengthening Theorem 1:

Distillation can transform any first-order cons-free program into an equivalent
second-order cons-free program that runs in polynomial time.

Basis for the conjecture: it seems plausible that distillation, if applied to an
arbitrary first-order cons-free program p, can transform it into an equivalent
second-order program that runs in polynomial time. Reasoning: the transforma-
tion of the proof above, if applied to a general first-order cons-free program,
seems analogous to the transformation that the distiller realised for the “palin-
drome” program.

More generally, each of the “accumulating parameters” that distillation gen-
erated for the reverse, factorial sum and Fibonacci examples resembles a cache
with static structure. Renaining to investigate is whether distillation can yield
an accumulating parameter the corresponds to a cache with dynamic structure,
as seen in the previous program. (Perhaps a static analysis of the Fiboonacci
code above could reveal that c is used in a static manner.)
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6 Final remarks and conclusions

6.1 A question to be resolved

A better understanding is emerging on the source of these interesting program
optimisations, though some questions are still less than perfectly clear. An ex-
ample: although the “supercompilation” that distillation is based on [12, 21,
23] yields at most linear speedups, distillation sometimes achieves superlinear
speedups. The major technical difference (at transformation-time) is that distil-
lation does “generalisation” by a form of second-order pattern matching.

The question: why and how does this make such a difference in the efficiency
of transformed programs? Answering this will require a better global insight into
second-order generalisation.

6.2 Are there limits to speedup by distillation?

The fact that distillation often yields linear-time programs may at first seem to
conflict with well-known results from complexity theory [14]: for example, for
any computable function f , there exist computational problems that cannot be
solved in time ¤ fpnq by any program. Consequence: there must be some limit to
how much transformation techniques such as distillation can achieve, regardless
of how strong the techniques used are.

An interesting question: Is there some sense in which distillation achieves a
best possible result, e.g., analogous to a minimal-state finite automaton? This
might be so.

However, by Blum’s speedup theorem [2] some functions have no best pro-
gram, precluding the possibility that distillation can always achieve the best
possible result in terms of efficiency. Furthermore, the output of distillation must
always be a finite program. This requirement could force the output program to
be asymptotically less efficient than an infinite LTS Drrpss resulting from driving
the input program.

6.3 An analogy with the Myhill-Nerode theorem

The Myhill-Nerode theorem [20] concerns definability of sets of finite strings over
a finite alphabet, for example a set L � t0, 1u�. The starting point is to define
an equivalence relation over finite strings x, y P t0, 1u� by

x � y iff @z . pxz P Lô yz P Lq

Theorem L is a regular set if and only if the relation � has only finitely many
equivalence classes. Furthermore, a minimal-state finite automaton ML that ac-
cepts exactly L can be constructed from �.

An interesting fact: the relation � is well-defined for any subset L � t0, 1u�,
whether regular or not. If L is not regular, then ML will have infinitely many
states. In all cases, ML is a homomorphic image of any automaton (finite- or
infinite-state) that accepts L.
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A consequence is that one can perform state minimisation of an initial au-
tomaton M by first constructing the relation � for the set accepted by M , and
then constructing ML from the equivalence classes of �.

The analogy: In the case of distillation, an initial program p is given, and
the possibly infinite LTS Drrpss is constructed from it by driving. Once this is
available, the distillation step is applied to construct from it another (finite)
program p1 that will often be faster than the original program p.

While the goal criteria for theMyhill-Nerode construction and distillation
differ (smaller-size state sets for DFA minimisation versus asymptotically faster
programs for distillation), the overall pattern seems tantalisingly similar.

6.4 Conclusions

In spite of many remaining open quesions, we hope the material above, partic-
ularly Sections 3 and 4, clarifies the way that distillation can yield superlinear
program speedups.

The question “how can an Opn2q program or Op2nq program be bisimilar to
an Opnq program?” has been answered: It is not the runtime state transitions of
the two programs that are bisimilar; but rather their driven versions. Further-
more, the numbers of states in their driven versions trace the number of cons’s
performed, and so reflect the two programs’ relative running times.

Finally, a large program set has been identified in which superlinear speedups
are likely to be achievable by by distillation: the first-order cons-free programs.
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